时间:2020-03-22 来源:互联网 阅读次数:
AI已经让一些技术边缘人群享受到技术进步带来的福利,这种福利“看得见、摸得着”。比如专为盲人研发的人工智能辅助视觉系统Seeing AI,这套由可穿戴眼镜和智能APP组成的系统,能基于微软智能云上的视觉识别和自然语言处理技术,识别出摄像头拍摄到的场景,如“一个穿红衣服的女孩正在踢球”“一个男孩正在练习滑板”。Seeing AI的目标是帮助全球2.85亿视力受损人群实现无障碍的生活。
论文数量大涨 研发能力攀升
随着人工智能的深入发展,标准化工作将越发庞杂,不仅标准化的对象将越来越复杂,而且以往标准化工作从未出现过的交叉、融合等也给人工智能标准化带来巨大挑战。目前,人工智能标准化体系建设相对滞后的影响已经显现。比如目前最热的智能家电产品,每个产品都有自己的APP,协议不兼容,跨品牌间互联互通困难。明确规范、可执行的国家标准、行业标准,可以为我国人工智能的持续健康发展掌舵。
偏见、刻板印象、歧视这些人类社会的痼疾,已经深入社会肌理。在这样的语境中产生的数据,携带着大量复杂、难以界定、泥沙俱下的观点。如果研究者没有意识到或着手处理这一问题,机器学习的偏见几乎无解。真正的“公正算法”或许是不存在的。但通过正确地校准标签、数据的均衡和可靠等,机器出现偏见、谬误甚至失控的可能会相应减少。此外,研究者也应该着手建立一种预防的机制,从道德的约束、技术标准的角度对人工智能进行价值观的干预。
近日,由斯坦福大学主导、来自MIT、OpenAI、哈佛、麦肯锡等机构的多位专家教授联合发布的人工智能指数年度报告出炉,报告显示,在人工智能这一领域,美国依然是当仁不让的王者,但中国的AI技术,无论在学术界还是产业界,都正以极快的速度向前追赶。报告中有几个惊人的数字:与2000年相比,2016年中国人工智能学者发表的论文被引用的次数提高了44%。清华大学去年学习人工智能和机器学习方向的学生数量是2010年的16倍。